# 非均匀性校正的长波光导探测器读出电路设计

钟燕平 1.2,袁红辉 1, 鞠国豪 1

(1. 中国科学院上海技术物理研究所 红外成像材料与器件重点实验室,上海 200083;2. 中国科学院大学,北京 100049)

**摘 要**:在航天遥感领域,波长在 10 μm 以上的长波探测器仍以 HgCdTe 光导型探测器为主,在红外 探测成像方面发挥着重要作用。非均匀性是目前长波光导探测器突出的问题之一,设计了一种数模 混合的非均匀性校正的长波光导探测器读出电路。该电路不仅可以有效地解决线列长波光导探测器 电阻非均匀性问题,还可以增大 ROIC 输出信号的动态范围,几乎不增加读出电路功耗。经过仿真测 试表明:非均匀性问题有了明显的改善,能够使其非均匀性降为 0.5%以内,在常温和低温下都能正常 工作。该校正电路不仅能解决当前工程中的关键问题,还对今后高性能大面阵长波光导探测器读出电 路的设计具有重要的指导意义。

关键词:非均匀性校正; 长波光导; 红外探测器; 读出电路 中图分类号:TN722 文献标志码:A DOI: 10.3788/IRLA201847.0104001

# Design of ROIC for long wave photoconductive detector with nonuniformity correction

Zhong Yanping<sup>1,2</sup>, Yuan Honghui<sup>1</sup>, Ju Guohao<sup>1</sup>

 Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: In the field of space remote sensing, the long wave detector with wavelength of 10  $\mu$ m or more is mainly based on HgCdTe photoconductive (PC) detector, which plays an important role in IR imaging. Nonuniformity is one of the outstanding problems in the long wave PC detector. A new type of long wave PC detector read-out integrated circuit(ROIC) in digital-analog mixed mode with nonuniformity correction was designed. The circuit could not only effectively solve nonuniformity of the linear long wave PC detector in resistance, but also increase the dynamic range of the output signal of the ROIC with almost no increase in power consumption. Simulation results show that the nonuniformity is greatly improved through the correction ROIC, which makes the nonuniformity reduce to less than 0.5%, and it can work at room temperature and low temperature. The correction circuit could not only solve the key problems in current project, but also have guiding significance for circuit future design of high performance large array IR detector.

Key words: nonuniformity correction; long wave photoconductive; IR detector; ROIC

收稿日期:2017-06-01; 修订日期:2017-08-15

基金项目:中国科学院微小卫星重点实验室开放课题基金(KTKT16-03)

作者简介:钟燕平(1993-),男,硕士生,主要从事 CMOS 集成电路的设计方面的研究。Email:ypzhong@mail.ustc.edu.cn

导师简介:袁红辉(1972-),男,研究员,博士,主要从事模拟 CMOS 集成电路的设计与测试方面的研究。Email:yuanhonghui@163.com

## 0 引 言

红外探测器在航天探测方面起着不可替代的作 用,长波红外探测器(波长在 10 μm 以上)在低温目 标探测、超视距探测和抗干扰目标识别等领域具有 极其重要的用途,因此一直是红外探测器技术发展 的一个重要方向<sup>[1-2]</sup>。对于 HgCdTe 长波红外光导型 探测器,怎么解决不同探测元之间的读出信号非均 匀性是电路设计的关键难题和研究重点。

在 HgCdTe 长波光导型探测器制作过程中,由 于工艺偏差和材料组分的缺陷,光导红外探测器存 在一定的非均匀性。这种工艺带来的非均匀性不但 严重影响读出电路的动态范围,而且会导致输出表 现出非均匀性,尤其是采用列级读出通道的探测器芯 片会出现明显的列条纹,这种非均匀性产生的空间噪 声通常远远大于时间噪声<sup>[3]</sup>。由于光导型红外探测器电 阻低且非均匀性大,影响光导探测器非均匀性的自身 因素主要有电阻、电阻温度系数、热导、红外吸收率、 热容等,其中电阻的非均匀性对输出带来的影响最 大<sup>[4]</sup>。目前,波长在 10 μm 以上的红外探测器仍以 HgCdTe 光导型探测器为主,电阻在 40Ω 左右,在目前工艺基础上,其电阻一般存在±10%左右误差。

虽然一般的非均匀性可以由外部电路校正,但 是会减小探测器的动态范围,而且针对性不强,效果 一般,具有一定的局限性。目前国内外几乎没有针对 光导型探测器非均匀性的片上校正电路,因此亟需 在片上读出电路中采用相应的技术以解决光导型红 外探测器非均匀性问题。

#### 1 电路系统结构设计

文中针对光导探测器电阻的非均匀性设计了一种片上校正读出电路,在探测器读出电路端采用逐次逼近式的匹配电阻结构单元,在信号放大之前达到校正效果。线列的红外探测器一位像元对应的非均匀性校正电路和读出电路结构原理如图1所示。该电路包括差分运算放大器(Dif\_amp)模块,比较器(Comparator)模块,计数器(Counter)模块,参考电阻结构单元(R<sub>ref</sub>)模块以及时钟(CLK),开关S和置零端R。校正的方法是在信号读取之前先为每一个探测元匹配一个等效电阻作为输入端参考电压的偏置电



图 1 非均匀性校正读出电路结构图 Fig.1 Structure of ROIC with nonuniformity correction

阻,匹配电阻由数字电路控制的电阻结构单元组成, 使未读取信号之前差分放大的两个输入电压几乎相 等,从而消除不同探测元电阻不均匀的影响。电路工 作的具体过程分为两步,第一步开关 S 闭合,比较器 和计数器通电,输入置零信号和时钟信号,比较器比 较探测器端和参考电阻电压的大小,若 V<sub>R-</sub>>V<sub>R</sub>,则 计数器计数,计数器控制参考电阻大小, $R_{ref}$ 减小,导 致  $V_{R_{ef}}$ 减小,不断循环直至  $V_{R_{ef}} \leq V_{R_{o}}$ 时,计数器保持 不变,这部分工作在微秒的时间内完成。第二步开关 断开,再断开比较器电源和时钟信号,计数器不断 电,使参考电阻结构单元阻值保持不变,再经差分放 大器串行读出,得到均匀的信号。 电源电压采用 2.5 V 直流电压,如果流过探测器 的电流太大,会使探测器发热加剧,太小的电流会使 探测器产生的电压信号太小,不利于信号的高性能 读出,所以偏置电阻设计  $R_a=R_b=1 k\Omega$ 。正常情况下,  $V_{bias}=V_{dd}, V_{bias}$ 可根据实际情况进行微调以扩大电路的 适用范围。通过实验测得 40 元 HgCdTe 光导型探测 器电阻如图 2 所示,去除盲元,电阻  $R_d$  阻值在 38.3~ 46.5 Ω 范围内,流过探测器的电流为 2.4 mA 左右, 分压在 92~111 mV 范围内, $R_d$ 均值为 41.99 Ω, 非均 匀性为 19.5%。



图 2 40 元 HgCdTe 光导型探测器电阻非均匀性 Fig.2 Nonuniformity of 40 HgCdTe PC detectors in resistance 由于电阻结构单元的阻值变化范围应大于  $R_d$ 的范围,并且综合考虑电阻精度的要求,因此设计参考电阻结构单元阻值由七位的二进制计数器控制。 考虑到芯片电阻工艺误差,电阻结构单元采用高电 阻并联的方式,图 3 给出了参考电阻结构单元图。其 由一个初始电阻和 7 条多晶硅电阻经对应的 NMOS 管并联组成,M1~M7 的栅分别对应计数器 Q0~Q6。 设计电阻值变化范围在 50~35 Ω,步长在 0.12 Ω 左 右, $V_{R_{eff}}$  变化范围 119~86 mV,能够使校正后的电阻 差值  $\Delta R = |R_{ref} - R_d| < 0.2 \Omega$ ,分压差值  $\Delta V = |V_{R_{eff}} - V_{R_d}| < 0.4 mV$ 。

图 4 给出了七位同步二进制加法计数器电路结构,计数器由 7 个上升沿 T 触发器、12 个与门和一个与非门组成,采用单向计数的方式,计数信号由比较器输出值 T 控制,T=1 时,计数器在一个脉冲周期内的一个上升沿计一位,相应的电阻结构单元阻值减小一个单元。当 T=0 时,计数器保持不变。为保证计数器不循环,即当计数器 Q0~Q6=1111111 时,不



图 3 参考电阻结构单元

Fig.3 Structure unit of reference resistance



图 4 七位同步二进制加法计数器电路结构

Fig.4 Circuit structure of 7-bit synchronous binary addition counter

再跳为0000000,在第7个计数器后通过一个与非 门和一个与门反馈到T上,使得当探测器电阻小于 参考电阻设计的最小值时,参考电阻取最小值。

电压比较器电路采用的是静态两级比较器,输 入端采用的是 PMOS 管做差分输入,图 5 为第一级预 放大正反馈判决电路。该电路利用 M9 管和 M10 管互 联的交叉栅极的正反馈来提高判决电路的增益<sup>[5]</sup>。



图 5 第一级预放大电路 Fig.5 First pre-amplifier

图 6 为第二级折叠式共源共栅放大电路,是比 较器主要的放大部分。 折叠式共源共栅具有增益 高,速度快等特点<sup>[6]</sup>。两级放大的开环直流电压增益





能够达到 80 dB 以上,能使比较器分辨率在 0.2 mV 以下。比较器的输出级采用的是互补输出。由于整个比较器工作在开环状态,所以不需要频率补偿。比较器单独供电,校正完成后比较器和时钟可断电设置保证了校正电路几乎不增加额外功耗和噪声。

#### 2 电路的仿真结果及分析

在探测器偏置电压为 2.5 V,比较器和计数器工 作电源电压为 5 V 的条件下,利用上华 CSMC 0.5 μm DPTM mixed signal 工艺模型对非均匀性校正单元 电路进行了具体设计并对常温和低温进行了仿真。

#### 2.1 比较器的仿真

图 7 为比较器两级放大器直流扫描仿真结果和 图 8 为比较器瞬态响应,N 端参考电压设为100 mV, 常温下,放大器开环增益为 97.84 dB,比较器分辨率 大于 0.03 mV,平均传输延迟时间(t,)约为 500 ns,在 分辨 0.1 mV 的电压时,t,约为 250 ns (如图 8 所示)。 低温-200 ℃下,开环增益为 95.18 dB,分辨 0.03 mV, t,≈1.3  $\mu$ s,分辨 0.1 mV,t,≈ 400 ns,满足低温工作要 求。输入共模范围大于 3.5 V。比较器和差分放大电 路的静态功耗均小于 1 mW。









#### 图 8 比较器瞬态响应

Fig.8 Transient response of comparator

| 红外与激光工程                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                       |                                    |                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|------------------------------------|-------------------------------------------------------------------------------|
| 第1期 <u>www.irla.cn</u> 第47章                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                       |                                    |                                                                               |
| <b>2.2</b><br>周期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 总电路仿真与分析<br>时钟脉冲周期应大于比较器的传输延迟时间<br>日设为500ns,设探测器的一位像元电阻为40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 的<br>可, 时<br>) | 条件下,常温非<br>序图如图 9(a)所<br>变化过程见图 9     | 均匀性校正电路<br>示,其中参考电<br>♡(b)。低温-200℃ | \$总仿真校正过程<br>阻结构单元分压<br>C下校正结果与常                                              |
| $CLH$ $V_{I}$ $V_{R_{n}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: second | 75 mV<br>11 mV | 0000000000000000000000000000000000000 | 07.772937 mV                       | $ \begin{array}{c}     \begin{array}{c}                                     $ |
| 2<br>Q<br>Q<br>Q<br>Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                       |                                    | Q0=1<br>Q1=0<br>Q2=0<br>Q3=0<br>Q4=1                                          |
| Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )<br>Time/µs   | 30                                    | []                                 | Q6=1<br>40                                                                    |
| (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                       |                                    |                                                                               |
| 15<br>12<br>$\Lambda = \frac{1}{M} $ | $\begin{bmatrix} 1 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                       | V 97.772937 m                      | V 95.892 82 mV                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v 10 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | σ<br>Time/μs   | 50                                    |                                    | ντ                                                                            |

(b)





温基本一致,其中 V<sub>R<sub>eff</sub></sub>变化过程如图 9(c)所示。从 图9(a)中可以看出,计数器和比较器都能正常工作。 图 9(b)和(c)中 V<sub>R<sub>eff</sub></sub>变化时有明显的毛刺,是因为 MOS 开关栅电容导致,MOS 开关的打开和关断对应 不同的权电阻,因此在开关的瞬间(10 ns 以下)会造 成电压的不稳定,这个时间小于比较器的传输延迟 时间(大于 100 ns),同时远小于时钟脉冲周期(大于 500 ns),所以对校正结果并无影响。

常温校正后的计数器最终值为 1 010 001,参考 电阻理论值应为 40 Ω,仿真实际值为 39.89 Ω,其分 压  $V_{R_{eff}}$ 为 95.89 mV,与探测器像元分压 96.15 mV 相 差 0.26 mV,-200 ℃时, $V_{R_{eff}}$ 为 96.03 mV,与  $V_{R_{eff}}$ 差值 0.12 mV,在设计误差范围内。在常温和低温-200 ℃ 下,35~50 Ω 范围内,经过多次改变探测器阻值,仿 真的校正结果  $V_{R_{eff}}$ 与  $V_{R_{eff}}$ 差值 ΔV 都小于 0.4 mV, $R_{ref}$ 与  $R_{d}$ 电阻差值 ΔR 都小于 0.2 Ω,均符合预期要求, 理论上校正后非均匀性可以降为 0.5%以下。校正后 的读出电路动态范围可以达到 70 dB 以上。

## 3 结 论

设计了一种自动匹配的数模混合的非均匀性校 正的红外探测器读出电路,该电路适合电阻较低的 光导红外探测器的非均匀性校正。在常温和低温下 对电路进行了仿真,结果表明该电路能够很好的校 正电阻的非均匀性,能够使探测器在接受红外辐射 之前,像元分压和参考电阻分压差值保持在 0.4 mV 内,能使其电阻非均匀性降为 0.5%以下。该校正电 路的主要优点有:精度高,校正效果明显,校正时间 短,可断电设置使校正电路几乎不增加额外功耗和读 出电路噪声,全自动匹配,步骤简单和适用范围广,能 在常温和低温下工作。该校正电路不仅能解决当前工 程中的关键问题,还对今后高性能大面阵长波光导红 外探测器读出电路的设计具有重要的指导意义。

#### 参考文献:

- Gong Haimei, Shao Xiumei, Li Xiangyang, et al. Advanced technology and application of spaceborne infrared detectors
   [J]. Infrared and Laser Engineering, 2012, 41(12): 3129-3140. (in Chinese)
- [2] Rogalski A. History of infrared detectors[J]. Opto-Electronics Review, 2012, 20(3): 279-308.
- Shi Haoran, Li Zhaolong, Shen Tongsheng. Research on nonuniformity correction of infrared focal plane array [J].
   Laser and Infrared, 2016, 46(2): 204-208. (in Chinese)
- [4] Meng Liya. Study on nonuniformity of microbolometer and new NUC readout circuit[D]. Chongqing: Chongqing University, 2005. (in Chinese)
- Jacob B R. CMOS circuit design, layout, and simulation [J].
   IEEE Series on Microelectronic Systems, 2014: 307-312.
- [6] Behzad Razavi. Design of Analog CMOS Integrated Circuits[M]. Xi'an: Xi'an Jiaotong University Press, 2003: 243-257.